Hackers and Slackers
Hackers and Slackers

Hackers and Slackers

  • About
  • Series
  • Join
  • Donate
Sign in Subscribe
  • Python
  • Software
  • DevOps
  • Architecture
  • Data Engineering
  • Pandas
  • Data Analysis
  • SQL
  • Data Science
  • REST APIs
  • JavaScript
  • Flask
  • AWS
  • NodeJS
  • Google Cloud
  • Apache
  • Frontend
  • MySQL
  • Data Vis
  • NoSQL
  • Home
  • About
  • Tags
    • Python
    • Software
    • DevOps
    • Architecture
    • Data Engineering
    • Pandas
    • Data Analysis
    • REST APIs
    • Data Science
    • SQL
    • JavaScript
    • Flask
    • AWS
    • NodeJS
    • Google Cloud
    • MySQL
  • Series
    • Data Analysis with Pandas
    • Build Flask Apps
    • Learning Apache Spark
    • Google Cloud Architecture
    • Mastering SQLAlchemy
    • GraphQL Tutorials
    • Welcome to SQL
    • Working with MySQL
    • Mapping Data with Mapbox
    • Web Scraping With Python
    • Python Concurrency with Asyncio
    • Getting Started with Django
  • Join
  • Donate
  • Sign in
  • Subscribe

Machine Learning

The latest developments in machine learning tools and technology available to data scientists.
Using Random Forests for Feature Selection with Categorical Features

Using Random Forests for Feature Selection with Categorical Features

Python helper functions for adding feature importance, and displaying them as a single variable.
Matthew Alhonte
Matthew Alhonte
Sep 24, 2018 • 2 mins
Code Snippet Corner
Tuning Random Forests Hyperparameters: min_samples_leaf

Tuning Random Forests Hyperparameters: min_samples_leaf

Tune the min_samples_leaf parameter in for a Random Forests classifier in scikit-learn in Python
Matthew Alhonte
Matthew Alhonte
Sep 17, 2018 • 4 mins
Code Snippet Corner
Tuning Random Forests Hyperparameters: max_depth

Tuning Random Forests Hyperparameters: max_depth

Tune the max_depth parameter in for a Random Forests classifier in scikit-learn in Python
Matthew Alhonte
Matthew Alhonte
Sep 10, 2018 • 2 mins
Code Snippet Corner
Tuning Machine Learning Hyperparameters with Binary Search

Tuning Machine Learning Hyperparameters with Binary Search

Tune the n_estimators parameter in for a Random Forests classifier in scikit-learn in Python.
Matthew Alhonte
Matthew Alhonte
Sep 3, 2018 • 4 mins
Code Snippet Corner

Tags

Python Software DevOps Data Engineering Architecture Pandas Excel Data Analysis SQL Data Science REST APIs JavaScript Flask Code Snippet Corner AWS NodeJS Google Cloud Frontend MySQL Apache Data Vis BI NoSQL GraphQL Spark PostgreSQL ExpressJS ETL Pipelines Tableau PowerBI SQLAlchemy GatsbyJS Powerpivot Machine Learning Automation Big Data Atlassian Mapbox Golang Scraping JAMStack Data Warehouses Plotly Docker Concurrency Hashicorp Django ReactJS SaaS Products Frameworks Java FastAPI Terraform Microsoft

Newsletter

Create an account to receive occasional updates and interact with the community.

Great!

Check your inbox and click the link to complete the subscription.

Error

Loading...

Series'

Data Analysis with Pandas 11
Build Flask Apps 11
Learning Apache Spark 6
Google Cloud Architecture 6
Mastering SQLAlchemy 4
GraphQL Tutorials 4
Welcome to SQL 4
Working with MySQL 4
Mapping Data with Mapbox 3
Web Scraping With Python 2
Python Concurrency with Asyncio 2
Getting Started with Django 2
Hackers and Slackers

Community of hackers obsessed with data science, data engineering, and analysis. Openly pushing a pro-robot agenda.

Navigation

    • About
    • Series
    • Join
    • Donate
  • Sign in
  • Subscribe

Series'

  • Data Analysis with Pandas
  • Build Flask Apps
  • Learning Apache Spark
  • Google Cloud Architecture
  • Mastering SQLAlchemy
  • GraphQL Tutorials
  • Welcome to SQL
  • Working with MySQL
  • Mapping Data with Mapbox
  • Web Scraping With Python
  • Python Concurrency with Asyncio
  • Getting Started with Django

Authors

  • Todd Birchard
  • Matthew Alhonte
  • Max Mileaf
  • Ryan Rosado
  • Graham Beckley
  • David Aquino
  • Paul Armstrong
  • Dylan Castillo
©2023 Hackers and Slackers, All Rights Reserved.