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          Check out the accompanying GitHub repo for this article here.
Technically, the School District of Philadelphia's budget data for the 2019 fiscal year is "open". It is, after all, made available through the district's Open Data portal and is freely available to download.
But just because data is freely available, doesn't mean it's easy to work with. That's what found out when I downloaded the zipped folder, opened it up, and found a heap of PDFs. Joy.
As a member of Code for Philly, I thought of my compatriots who might want to use school district data in their projects. I knew with a bit of data munging, I could provide a data set that would be more easily usable.
Data Liberation
The first hurdle was to find a way to get the data from the PDFs. After a bit Googling, I came across tabula-py, a Python wrapper for Tabula.
Each budget is composed of 5 tables:
	General information about the school
	Enrollment information
	Operating Funded budget allotments
	Grant Funded budget allotments
	A summary table of allotment totals

Extracting these tables from a budget with Tabula was as simple as:
import tabula


tabula.read_pdf(
    path/to/budget.pdf,
    multiple_tables=True
)
Parse PDF data with TabulaWhich returned a list of DataFrames, one for each table mentioned above. Perfect! 
So, I iterated over all of the files in folder and appended them to a list:
import os
import pandas as pd
import tabula


def read_budgets(directory):
    budgets = []
    for filename in os.listdir(directory):
        budget_tables = tabula.read_pdf(
            f"{directory}/{filename}", 
            multiple_tables=True
        )
        budgets.append(budget_tables)
    return budgets


# this takes a while
budgets = read_budgets("SY1819_School_Budgets")
Parse all PDFs in a given directoryInitial Cleaning
While this gave me a good start, I knew it wouldn't be that easy to liberate the data from the PDFs. I took a look at each of the DataFrames to see what I'd be working with. 
# an example list of budgets
sample_budget = budgets[0]
sample_budget  
Output:
[    0                  1
     0    Basic Information                NaN
     1     Council District                2nd
     2    Organization Code               1380
     3         School Level  Elementary School
     4         Economically                NaN
     5  Disadvantaged Rate*                NaN
     6                  NaN             83.44%,
                   0     1     2               3
     0           NaN  FY14  FY18  FY19 Projected
     1  Enrollment**   842   640             602,
                                                       0            1            2  \
     0                              Position/Expenditure  FY14 Budget  FY18 Budget   
     1                   Principals/Assistant Principals          2.0          1.0   
     2                      Teachers â€� Regular Education         30.2         25.0   
     3                      Teachers â€� Special Education          6.0          2.8   
     4      Counselors/Student Adv./ Soc. Serv. Liaisons          1.2          0.8   
     5                            Nurses/Health Services          0.6          1.0   
     6           Classroom Assistants/Teacher Assistants         11.0          8.0   
     7                                       Secretaries          1.0          1.0   
     8                       Support Services Assistants          0.0          2.0   
     9                             Student Climate Staff          8.0          1.0   
     10                                            Other          0.0          1.2   
     11                                  Total Positions         60.0         43.8   
     12  Supplies/Equipment/Non Fullâ€�Time Salaries/Other      $32,272     $100,159   
     
                   3  
     0   FY19 Budget  
     1           1.0  
     2          24.0  
     3           5.0  
     4           0.1  
     5           1.0  
     6           9.0  
     7           1.0  
     8           5.0  
     9           3.0  
     10          1.0  
     11         50.1  
     12      $97,553  ,
                                                       0            1            2  \
     0                              Position/Expenditure  FY14 Budget  FY18 Budget   
     1                   Principals/Assistant Principals          0.0          0.0   
     2                      Teachers â€� Regular Education          8.1          8.6   
     3                      Teachers â€� Special Education          0.0          0.2   
     4      Counselors/Student Adv./ Soc. Serv. Liaisons          0.0          0.2   
     5                            Nurses/Health Services          0.0          0.0   
     6           Classroom Assistants/Teacher Assistants          0.0          0.0   
     7                                       Secretaries          0.0          0.0   
     8                       Support Services Assistants          7.0          5.0   
     9                             Student Climate Staff          0.0          7.0   
     10                                            Other          1.0          0.0   
     11                                  Total Positions         16.1         21.0   
     12  Supplies/Equipment/Non Fullâ€�Time Salaries/Other     $198,454      $19,977   
     
                   3  
     0   FY19 Budget  
     1           0.0  
     2           9.6  
     3           0.0  
     4           1.1  
     5           0.0  
     6           0.0  
     7           0.0  
     8           3.0  
     9           4.0  
     10          0.0  
     11         17.7  
     12      $15,166  ,
                                                        0                     1  \
     0                                                NaN  Position/Expenditure   
     1                                    Total Positions                   NaN   
     2  Total Supplies/Equipment/Non Fullâ€�Time Salarie...                   NaN   
     
                  2            3            4  
     0  FY14 Budget  FY18 Budget  FY19 Budget  
     1         76.1         64.8         67.8  
     2     $230,726     $120,136     $112,719  ]  
After I saw the output, I wrote a function to perform the same cleaning operation for each table in each budget.
For each table below, first I'll introduce the "raw" output that Tabula returned, then I'll show the function that I wrote to fix that output.
Basic Information
basic_information = sample_budget[0] #basic information
basic_information
Output:



		0	1
	0	Basic Information	NaN
	1	Council District	2nd
	2	Organization Code	1380
	3	School Level	Elementary School
	4	Economically	NaN
	5	Disadvantaged Rate*	NaN
	6	NaN	83.44%



Cleanup Function
...

def generate_basic_information_table(df):
    '''Series representing the "basic information" table.'''

    # budgets with a comment near the basic information table, e.g. 2050
    if df.shape[1] == 3:
        df = df.iloc[1:, 1:]
        df = df.reset_index(drop=True)
        df = df.T.reset_index(drop=True).T

    # Tabula did pretty well for this table, but didn't get the
    # Economically Disadvanted Rate quite right.

    df.loc[4] = ["Economically Disadvantaged Rate", df.loc[6, 1]]
    df = df.loc[1:4, :]
    return pd.Series(
        list(df[1]),
        index=list(df[0]),
        name='basic_information'
    )
Cleaned:
basic_information = generate_basic_information_table(basic_information)
basic_information
Output:
# Basic information output
Council District                                 2nd
Organization Code                               1380
School Level                       Elementary School
Economically Disadvantaged Rate               83.44%
Name: basic_information, dtype: object
Enrollment
# Getting the enrollment output
enrollment = sample_budget[1]
enrollment
Output:



		0	1	2	3
	0	NaN	FY14	FY18	FY19 Projected
	1	Enrollment**	842	640	602



Cleanup Function
...


def generate_enrollment_table(df):
    '''returns a series representing the "enrollment" table'''
    df = df.T.loc[1:, :]
    df_to_series = pd.Series(
        list(df[1]),
        index=list(df[0]),
        name="enrollment"
    )
    return df_to_series.str.replace(',', '').astype(float)

generate_enrollment_table(enrollment)
Cleaned:
# Enrollment table
FY14              842.0
FY18              640.0
FY19 Projected    602.0
Name: enrollment, dtype: float64
Allotments
Luckily, both allotment tables were identical, so I could apply to the same cleanup steps to both.
operating_funded_allotments = sample_budget[2]
operating_funded_allotments
Output:

		0	1	2	3
	0	Position/Expenditure	FY14 Budget	FY18 Budget	FY19 Budget
	1	Principals/Assistant Principals	2.0	1.0	1.0
	2	Teachers â€� Regular Education	30.2	25.0	24.0
	3	Teachers â€� Special Education	6.0	2.8	5.0
	4	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	5	Nurses/Health Services	0.6	1.0	1.0
	6	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	7	Secretaries	1.0	1.0	1.0
	8	Support Services Assistants	0.0	2.0	5.0
	9	Student Climate Staff	8.0	1.0	3.0
	10	Other	0.0	1.2	1.0
	11	Total Positions	60.0	43.8	50.1
	12	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	$32,272	$100,159	$97,553



grant_funded_allotments = sample_budget[3]
grant_funded_allotments
Cleanup Function
I decided to merge the two allotment tables into one DataFrame while building a MultiIndex to keep things in order. This would allow me to ask some more interesting questions further on down the road.
...


def generate_allotments_table(df, code, fund):
    """Multiindex of org, fund, and budget category by year."""
    df.columns = df.iloc[0]
    df = df.drop(0)
    df = df.set_index(['Position/Expenditure'])
    df = (df.apply(lambda x: x.str.replace('$', '').str.replace(',', ''))
            .astype(float)
          )
    df.name = fund + "ed_allotments"

    df_index_arrays = [
        [code] * len(df),
        [fund] * len(df),
        list(df.index),
    ]

    df.index = pd.MultiIndex.from_arrays(
        df_index_arrays,
        names=("org_code", "fund", "allotment")
    )
    df.columns = [column[:4] for column in df.columns]

    return df
Cleaned:
pd.concat([
    generate_allotments_table(
        operating_funded_allotments, "1410", "operating_fund"
    ),
    generate_allotments_table(
        grant_funded_allotments, "1410", "grant_fund"
    )
])

	FY14	FY18	FY19	org_code	fund	allotment
	1410	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	Secretaries	1.0	1.0	1.0
	Support Services Assistants	0.0	2.0	5.0
	Student Climate Staff	8.0	1.0	3.0
	Other	0.0	1.2	1.0
	Total Positions	60.0	43.8	50.1
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	32272.0	100159.0	97553.0
	grant_fund	Principals/Assistant Principals	0.0	0.0	0.0
	Teachers â€� Regular Education	8.1	8.6	9.6
	Teachers â€� Special Education	0.0	0.2	0.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	0.0	0.2	1.1
	Nurses/Health Services	0.0	0.0	0.0
	Classroom Assistants/Teacher Assistants	0.0	0.0	0.0
	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0



Totals
Since the final "totals" table could be calculated from the data already in the new allotment table, I didn't bother transforming it in any way.
# same data can be derived from the allotments table directly
sample_budget[4]


		0	1	2	3	4
	0	NaN	Position/Expenditure	FY14 Budget	FY18 Budget	FY19 Budget
	1	Total Positions	NaN	76.1	64.8	67.8
	2	Total Supplies/Equipment/Non Fullâ€�Time Salarie...	NaN	$230,726	$120,136	$112,719



Once I figured out what transformations I needed for each table, I combined them into a function so that, given a list of DataFames from Tabula, I'd get those same tables back neatly formatted.
...

def generate_all_tables(list_of_df):
    basic_information = generate_basic_information_table(list_of_df[0])
    enrollment = generate_enrollment_table(list_of_df[1])

    operating_funded_allotments = generate_allotments_table(
        list_of_df[2],
        basic_information['Organization Code'],
        'operating_fund'
    )
    grant_funded_allotments = generate_allotments_table(
        list_of_df[3],
        basic_information['Organization Code'],
        'grant_fund'
    )
    allotments = pd.concat(
        [operating_funded_allotments, grant_funded_allotments]
    )

    return basic_information, enrollment, operating_and_grant_funded_allotments

basic_information, enrollment, allotments = generate_all_tables(sample_budget)
Aggregation Time
Now that I had cleaned the tables that Tabula produced, it was time to combine them into some aggregated tables.
First I wrote a function that would output a Series (representing one row) of information from all tables for a given school in a given fiscal year. 
...


def generate_row(budget_year, basic_information, allotments, enrollment):
    """
    School budget series for fiscal year.
    
    budget_year should be FY14, FY18, or FY19
    """    
    flattened_allotments = pd.DataFrame(allotments.to_records())
    flattened_allotments.index = flattened_allotments['fund'] +": " + flattened_allotments['allotment']
    flattened_allotments = flattened_allotments.drop(
        ['fund','allotment'], axis=1
    )
    budget_allotments = flattened_allotments[budget_year]
    
    enrollment_label = budget_year + ' Projected' if budget_year == "FY19" else budget_year
    enrollment_index = 'projected_enrollment' if budget_year == "FY19" else 'enrollment'
    enrollment_row = pd.Series(
        enrollment[enrollment_label], index=[enrollment_index]
    )
    
    return pd.concat(
        [basic_information,budget_allotments,enrollment_row],
        axis=0
    )

generate_row(
    "FY18", 
    basic_information,
    operating_and_grant_funded_allotments,
    enrollment
)
Output:
Council District 2 nd
Organization Code 1380
School Level Elementary School
Economically Disadvantaged Rate 83.44 %
operating_fund: Principals / Assistant Principal.1
operating_fund: Teachersâ€� Regular Education 25
operating_fund: Teachersâ€� Special Education 2.8
operating_fund: Counselors / Student Adv. / Soc.Serv.Liaisons 0.8
operating_fund: Nurses / Health Services 1
operating_fund: Classroom Assistants / Teacher Assistants 8
operating_fund: Secretaries 1
operating_fund: Support Services Assistants 2
operating_fund: Student Climate Staff 1
operating_fund: Other 1.2
operating_fund: Total Positions 43.8
operating_fund: Supplies / Equipment / Non Fullâ€� Time Salaries / Other 100159
grant_fund: Principals / Assistant Principals 0
grant_fund: Teachersâ€� Regular Education 8.6
grant_fund: Teachersâ€� Special Education 0.2
grant_fund: Counselors / Student Adv. / Soc.Serv.Liaisons 0.2
grant_fund: Nurses / Health Services 0
grant_fund: Classroom Assistants / Teacher Assistants 0
grant_fund: Secretaries 0
grant_fund: Support Services Assistants 5
grant_fund: Student Climate Staff 7
grant_fund: Other 0
grant_fund: Total Positions 21
grant_fund: Supplies / Equipment / Non Fullâ€� Time Salaries / Other 19977
enrollment 640
dtype: object
Then, I applied this function to each list of budgets in the collection and compiled them into a DataFrame.
...

def generate_tabular_budget(budget_year, budgets):
    """
    Generate a tabular budget summary for a budget year.
    
    Budget year must be FY14, FY18, or FY19.
    Enrollemnt values for budget year 2019 are projected.
    """
    school_budget_series = []
    for budget_tables in budgets:
        basic_information, enrollment, operating_and_grant_funded_allotments = generate_all_tables(
            budget_tables
        )
        budget_row = generate_row(
            budget_year, basic_information, operating_and_grant_funded_allotments, enrollment
        )
        budget_row = budget_row
        school_budget_series.append(budget_row)

    return pd.DataFrame(school_budget_series)


fy14 = generate_tabular_budget('FY14', budgets)
fy14['budget_year'] = "FY14"
fy14.to_csv("output/combined_fy14.csv")

fy18 = generate_tabular_budget('FY18', budgets)
fy18['budget_year'] = "FY18"
fy18.to_csv("output/combined_fy18.csv")

fy19 = generate_tabular_budget('FY19', budgets)
fy19['budget_year'] = "FY19"
fy19.to_csv("output/combined_fy19.csv")


combined_tabular_budgets = pd.concat([fy14, fy18, fy19])
combined_tabular_budgets.to_csv("output/all_budgets_tabular.csv")
Finally, I wanted to output a CSV that would preserve some of the multi-indexed nature of the allotment tables. Here's what I wrote for that.
...

def generate_hierarchical_budget(budgets):
    school_budgets_dfs = []
    for budget_tables in budgets:
        school_budgets_dfs.append(operating_and_grant_funded_allotments)
    return pd.concat(school_budgets_dfs)

hierarchical_budget = generate_hierarchical_budget(budgets)
hierarchical_budget.to_csv("output/all_budgets_hierarchical.csv")

hierarchical_budget
Output:

	FY14	FY18	FY19	org_code	fund	allotment
	1380	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	Secretaries	1.0	1.0	1.0
	Support Services Assistants	0.0	2.0	5.0
	Student Climate Staff	8.0	1.0	3.0
	Other	0.0	1.2	1.0
	Total Positions	60.0	43.8	50.1
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	32272.0	100159.0	97553.0
	grant_fund	Principals/Assistant Principals	0.0	0.0	0.0
	Teachers â€� Regular Education	8.1	8.6	9.6
	Teachers â€� Special Education	0.0	0.2	0.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	0.0	0.2	1.1
	Nurses/Health Services	0.0	0.0	0.0
	Classroom Assistants/Teacher Assistants	0.0	0.0	0.0
	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0
	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	grant_fund	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0
	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	Secretaries	1.0	1.0	1.0
	Support Services Assistants	0.0	2.0	5.0
	Student Climate Staff	8.0	1.0	3.0
	Other	0.0	1.2	1.0
	Total Positions	60.0	43.8	50.1
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	32272.0	100159.0	97553.0
	grant_fund	Principals/Assistant Principals	0.0	0.0	0.0
	Teachers â€� Regular Education	8.1	8.6	9.6
	Teachers â€� Special Education	0.0	0.2	0.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	0.0	0.2	1.1
	Nurses/Health Services	0.0	0.0	0.0
	Classroom Assistants/Teacher Assistants	0.0	0.0	0.0
	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0


5160 rows Ã— 3 columns


This makes it easier to aggregate in interesting ways:
hierarchical_budget.groupby('allotment').sum()
Output:


	FY14	FY18	FY19	allotment
	Classroom Assistants/Teacher Assistants	2365.0	1720.0	1935.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	258.0	215.0	258.0
	Nurses/Health Services	129.0	215.0	215.0
	Other	215.0	258.0	215.0
	Principals/Assistant Principals	430.0	215.0	215.0
	Secretaries	215.0	215.0	215.0
	Student Climate Staff	1720.0	1720.0	1505.0
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	49606090.0	25829240.0	24234585.0
	Support Services Assistants	1505.0	1505.0	1720.0
	Teachers â€� Regular Education	8234.5	7224.0	7224.0
	Teachers â€� Special Education	1290.0	645.0	1075.0
	Total Positions	16361.5	13932.0	14577.0



More Cleaning to be Done
My work here is done. I saved the data from their not-so-accessible PDF prisons. But now it's time for someone with some domain-specific knowledge to make it actionable.
The biggest weakness with the data in its current form is that there is some amount of ambiguity as to what the different allotments numbers represent in real-dollar amounts. Only the Supplies/Equipment/Non Fullâ€�Time Salaries/Other allotment category came in currency notation â€“ the rest of the allotments were represented as simple decimal amounts with no context to help interpret what they mean. Do they represent FTE? Dollar amounts in scientific notation? I'm not sure, but I hope by handing this work off to the right people, these questions and more can be answered more easily thanks to a cleaner, more accessible data set.

        
        
    Pandas
    Python

          
    
        
          
        
      
        
          
            Graham Beckley
            
          

        

        
            
              
              Philly
            

            
              
            

            
              
            

        

          Loves Python; loves Pandas; leaves every project more Pythonic than he found it.

      

    

  

      
    
  

  
    
      

    
    
        
    

      
  
    Monthly Newsletter
    
      
      
      
        Sign Up
        
      
    

  

  
    Support us
    We share tutorials to help and inspire new engineers and enthusiasts. If you've found Hackers and Slackers to be helpful, we welcome donations in the form of coffee :).

    
      
    
  


          
            Related Posts

            
                
    
      
  
  
    
      
        
          The Level-Up: What I've Learned in the Four Years Since My Last Post
        

      
        A journey through Power BI, PowerPivot, PowerQuery, XLOOKUP, and all the goodies of 64-bit Microsoft Office.

    
    
      
        
          
            
              Jan 30, 2023
            
              â€¢
              10 mins
          

        

      

    
  

                
    
      
  
  
    
      
        
          Serving Assets via CDN with Google Cloud
        

      
        Serve static content via a Google Cloud CDN to improve load times. Fine-tune your load balancer and caching to match your appâ€™s needs.

    
    
      
        
          
            
              Apr 13, 2022
            
              â€¢
              11 mins
          

        

      

    
  

                
    
      
  
  
    
      
        
          Async Python HTTP Requests with AIOHTTP & AIOFiles
        

      
        Handle hundreds of HTTP requests, disk writes, and other I/O-bound tasks with quintessential async Python libraries.

    
    
      
        
          
            
              Jan 18, 2022
            
              â€¢
              14 mins
          

        

      

    
  

            

          
    

  


      

    

    
  
        
            
                
            
        Community of hackers obsessed with data science, data engineering, and analysis. Openly pushing a pro-robot agenda.

    

    
        
    Navigation

    
	
        
          About
        
      
	
        
          Series
        
      
	
        
          Join
        
      
	
        
          Donate
        
      


        	Sign in
	Subscribe


  

        
    Authors

    	
            
              Todd Birchard
            
          
	
            
              Matthew Alhonte
            
          
	
            
              Max Mileaf
            
          
	
            
              Ryan Rosado
            
          
	
            
              Graham Beckley
            
          
	
            
              David Aquino
            
          
	
            
              Paul Armstrong
            
          
	
            
              Dylan Castillo
            
          


  

      
  Series'

  	
          Data Analysis with Pandas
        
	
          Build Flask Apps
        
	
          Google Cloud Architecture
        
	
          Learning Apache Spark
        
	
          Mastering SQLAlchemy
        
	
          Welcome to SQL
        
	
          GraphQL Tutorials
        
	
          Working with MySQL
        
	
          Mapping Data with Mapbox
        
	
          Python Concurrency with Asyncio
        
	
          Getting Started with Django
        
	
          Web Scraping With Python
        



    

  

  
    
  
    
      
    
  
  
    
      
    
  
  
    
      
    
  
  
    
      
    
  
  
    
      
    
  
  
    
      
    
  
  
    
      
    
  

    Â©2024 Hackers and Slackers, All Rights Reserved.

  

    
  