

 Hackers and Slackers

 	

 About

	

 Series

	

 Join

	

 Donate

 Sign in
 Subscribe

 	
 Python

	
 Software

	
 DevOps

	
 Architecture

	
 Data Engineering

	
 Pandas

	
 Data Analysis

	
 SQL

	
 Data Science

	
 REST APIs

	
 JavaScript

	
 Flask

	
 AWS

	
 NodeJS

	
 Google Cloud

	
 Apache

	
 Frontend

	
 MySQL

	
 Data Vis

	
 NoSQL

 	
 Home

	
 About

	

 Tags

 	
 Python

	
 Software

	
 DevOps

	
 Architecture

	
 Data Engineering

	
 Pandas

	
 Data Analysis

	
 REST APIs

	
 Data Science

	
 SQL

	
 JavaScript

	
 Flask

	
 AWS

	
 NodeJS

	
 Google Cloud

	
 MySQL

	

 Series

 	
 Data Analysis with Pandas

	
 Build Flask Apps

	
 Google Cloud Architecture

	
 Learning Apache Spark

	
 Mastering SQLAlchemy

	
 Welcome to SQL

	
 GraphQL Tutorials

	
 Working with MySQL

	
 Mapping Data with Mapbox

	
 Python Concurrency with Asyncio

	
 Getting Started with Django

	
 Web Scraping With Python

	
 Join

	
 Donate

	Sign in
	Subscribe

 Pandas

 Parse Data from PDFs with Tabula and Pandas

 Parse data from PDFs into Pandas DataFrames by using Python's Tabula library.

 Graham Beckley

 Nov 4, 2018
 â€¢
 11 min read

 	
 Comparing Rows Between Two Pandas DataFrames

	
 Using Hierarchical Indexes With Pandas

	
 Reshaping Pandas DataFrames

	
 Data Visualization With Seaborn and Pandas

	
 Parse Data from PDFs with Tabula and Pandas

	
 Lazy Pandas and Dask

	
 Automagically Turn JSON into Pandas DataFrames

	
 Connecting Pandas to a Database with SQLAlchemy

	
 Dropping Rows of Data Using Pandas

	
 Merge Sets of Data in Python Using Pandas

	
 Another 'Intro to Data Analysis in Python Using Pandas' Post

 Check out the accompanying GitHub repo for this article here.
Technically, the School District of Philadelphia's budget data for the 2019 fiscal year is "open". It is, after all, made available through the district's Open Data portal and is freely available to download.
But just because data is freely available, doesn't mean it's easy to work with. That's what found out when I downloaded the zipped folder, opened it up, and found a heap of PDFs. Joy.
As a member of Code for Philly, I thought of my compatriots who might want to use school district data in their projects. I knew with a bit of data munging, I could provide a data set that would be more easily usable.
Data Liberation
The first hurdle was to find a way to get the data from the PDFs. After a bit Googling, I came across tabula-py, a Python wrapper for Tabula.
Each budget is composed of 5 tables:
	General information about the school
	Enrollment information
	Operating Funded budget allotments
	Grant Funded budget allotments
	A summary table of allotment totals

Extracting these tables from a budget with Tabula was as simple as:
import tabula

tabula.read_pdf(
 path/to/budget.pdf,
 multiple_tables=True
)
Parse PDF data with TabulaWhich returned a list of DataFrames, one for each table mentioned above. Perfect!
So, I iterated over all of the files in folder and appended them to a list:
import os
import pandas as pd
import tabula

def read_budgets(directory):
 budgets = []
 for filename in os.listdir(directory):
 budget_tables = tabula.read_pdf(
 f"{directory}/{filename}",
 multiple_tables=True
)
 budgets.append(budget_tables)
 return budgets

this takes a while
budgets = read_budgets("SY1819_School_Budgets")
Parse all PDFs in a given directoryInitial Cleaning
While this gave me a good start, I knew it wouldn't be that easy to liberate the data from the PDFs. I took a look at each of the DataFrames to see what I'd be working with.
an example list of budgets
sample_budget = budgets[0]
sample_budget
Output:
[0 1
 0 Basic Information NaN
 1 Council District 2nd
 2 Organization Code 1380
 3 School Level Elementary School
 4 Economically NaN
 5 Disadvantaged Rate* NaN
 6 NaN 83.44%,
 0 1 2 3
 0 NaN FY14 FY18 FY19 Projected
 1 Enrollment** 842 640 602,
 0 1 2 \
 0 Position/Expenditure FY14 Budget FY18 Budget
 1 Principals/Assistant Principals 2.0 1.0
 2 Teachers â€� Regular Education 30.2 25.0
 3 Teachers â€� Special Education 6.0 2.8
 4 Counselors/Student Adv./ Soc. Serv. Liaisons 1.2 0.8
 5 Nurses/Health Services 0.6 1.0
 6 Classroom Assistants/Teacher Assistants 11.0 8.0
 7 Secretaries 1.0 1.0
 8 Support Services Assistants 0.0 2.0
 9 Student Climate Staff 8.0 1.0
 10 Other 0.0 1.2
 11 Total Positions 60.0 43.8
 12 Supplies/Equipment/Non Fullâ€�Time Salaries/Other $32,272 $100,159

 3
 0 FY19 Budget
 1 1.0
 2 24.0
 3 5.0
 4 0.1
 5 1.0
 6 9.0
 7 1.0
 8 5.0
 9 3.0
 10 1.0
 11 50.1
 12 $97,553 ,
 0 1 2 \
 0 Position/Expenditure FY14 Budget FY18 Budget
 1 Principals/Assistant Principals 0.0 0.0
 2 Teachers â€� Regular Education 8.1 8.6
 3 Teachers â€� Special Education 0.0 0.2
 4 Counselors/Student Adv./ Soc. Serv. Liaisons 0.0 0.2
 5 Nurses/Health Services 0.0 0.0
 6 Classroom Assistants/Teacher Assistants 0.0 0.0
 7 Secretaries 0.0 0.0
 8 Support Services Assistants 7.0 5.0
 9 Student Climate Staff 0.0 7.0
 10 Other 1.0 0.0
 11 Total Positions 16.1 21.0
 12 Supplies/Equipment/Non Fullâ€�Time Salaries/Other $198,454 $19,977

 3
 0 FY19 Budget
 1 0.0
 2 9.6
 3 0.0
 4 1.1
 5 0.0
 6 0.0
 7 0.0
 8 3.0
 9 4.0
 10 0.0
 11 17.7
 12 $15,166 ,
 0 1 \
 0 NaN Position/Expenditure
 1 Total Positions NaN
 2 Total Supplies/Equipment/Non Fullâ€�Time Salarie... NaN

 2 3 4
 0 FY14 Budget FY18 Budget FY19 Budget
 1 76.1 64.8 67.8
 2 $230,726 $120,136 $112,719]
After I saw the output, I wrote a function to perform the same cleaning operation for each table in each budget.
For each table below, first I'll introduce the "raw" output that Tabula returned, then I'll show the function that I wrote to fix that output.
Basic Information
basic_information = sample_budget[0] #basic information
basic_information
Output:

		0	1
	0	Basic Information	NaN
	1	Council District	2nd
	2	Organization Code	1380
	3	School Level	Elementary School
	4	Economically	NaN
	5	Disadvantaged Rate*	NaN
	6	NaN	83.44%

Cleanup Function
...

def generate_basic_information_table(df):
 '''Series representing the "basic information" table.'''

 # budgets with a comment near the basic information table, e.g. 2050
 if df.shape[1] == 3:
 df = df.iloc[1:, 1:]
 df = df.reset_index(drop=True)
 df = df.T.reset_index(drop=True).T

 # Tabula did pretty well for this table, but didn't get the
 # Economically Disadvanted Rate quite right.

 df.loc[4] = ["Economically Disadvantaged Rate", df.loc[6, 1]]
 df = df.loc[1:4, :]
 return pd.Series(
 list(df[1]),
 index=list(df[0]),
 name='basic_information'
)
Cleaned:
basic_information = generate_basic_information_table(basic_information)
basic_information
Output:
Basic information output
Council District 2nd
Organization Code 1380
School Level Elementary School
Economically Disadvantaged Rate 83.44%
Name: basic_information, dtype: object
Enrollment
Getting the enrollment output
enrollment = sample_budget[1]
enrollment
Output:

		0	1	2	3
	0	NaN	FY14	FY18	FY19 Projected
	1	Enrollment**	842	640	602

Cleanup Function
...

def generate_enrollment_table(df):
 '''returns a series representing the "enrollment" table'''
 df = df.T.loc[1:, :]
 df_to_series = pd.Series(
 list(df[1]),
 index=list(df[0]),
 name="enrollment"
)
 return df_to_series.str.replace(',', '').astype(float)

generate_enrollment_table(enrollment)
Cleaned:
Enrollment table
FY14 842.0
FY18 640.0
FY19 Projected 602.0
Name: enrollment, dtype: float64
Allotments
Luckily, both allotment tables were identical, so I could apply to the same cleanup steps to both.
operating_funded_allotments = sample_budget[2]
operating_funded_allotments
Output:

		0	1	2	3
	0	Position/Expenditure	FY14 Budget	FY18 Budget	FY19 Budget
	1	Principals/Assistant Principals	2.0	1.0	1.0
	2	Teachers â€� Regular Education	30.2	25.0	24.0
	3	Teachers â€� Special Education	6.0	2.8	5.0
	4	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	5	Nurses/Health Services	0.6	1.0	1.0
	6	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	7	Secretaries	1.0	1.0	1.0
	8	Support Services Assistants	0.0	2.0	5.0
	9	Student Climate Staff	8.0	1.0	3.0
	10	Other	0.0	1.2	1.0
	11	Total Positions	60.0	43.8	50.1
	12	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	$32,272	$100,159	$97,553

grant_funded_allotments = sample_budget[3]
grant_funded_allotments
Cleanup Function
I decided to merge the two allotment tables into one DataFrame while building a MultiIndex to keep things in order. This would allow me to ask some more interesting questions further on down the road.
...

def generate_allotments_table(df, code, fund):
 """Multiindex of org, fund, and budget category by year."""
 df.columns = df.iloc[0]
 df = df.drop(0)
 df = df.set_index(['Position/Expenditure'])
 df = (df.apply(lambda x: x.str.replace('$', '').str.replace(',', ''))
 .astype(float)
)
 df.name = fund + "ed_allotments"

 df_index_arrays = [
 [code] * len(df),
 [fund] * len(df),
 list(df.index),
]

 df.index = pd.MultiIndex.from_arrays(
 df_index_arrays,
 names=("org_code", "fund", "allotment")
)
 df.columns = [column[:4] for column in df.columns]

 return df
Cleaned:
pd.concat([
 generate_allotments_table(
 operating_funded_allotments, "1410", "operating_fund"
),
 generate_allotments_table(
 grant_funded_allotments, "1410", "grant_fund"
)
])

	FY14	FY18	FY19	org_code	fund	allotment
	1410	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	Secretaries	1.0	1.0	1.0
	Support Services Assistants	0.0	2.0	5.0
	Student Climate Staff	8.0	1.0	3.0
	Other	0.0	1.2	1.0
	Total Positions	60.0	43.8	50.1
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	32272.0	100159.0	97553.0
	grant_fund	Principals/Assistant Principals	0.0	0.0	0.0
	Teachers â€� Regular Education	8.1	8.6	9.6
	Teachers â€� Special Education	0.0	0.2	0.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	0.0	0.2	1.1
	Nurses/Health Services	0.0	0.0	0.0
	Classroom Assistants/Teacher Assistants	0.0	0.0	0.0
	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0

Totals
Since the final "totals" table could be calculated from the data already in the new allotment table, I didn't bother transforming it in any way.
same data can be derived from the allotments table directly
sample_budget[4]

		0	1	2	3	4
	0	NaN	Position/Expenditure	FY14 Budget	FY18 Budget	FY19 Budget
	1	Total Positions	NaN	76.1	64.8	67.8
	2	Total Supplies/Equipment/Non Fullâ€�Time Salarie...	NaN	$230,726	$120,136	$112,719

Once I figured out what transformations I needed for each table, I combined them into a function so that, given a list of DataFames from Tabula, I'd get those same tables back neatly formatted.
...

def generate_all_tables(list_of_df):
 basic_information = generate_basic_information_table(list_of_df[0])
 enrollment = generate_enrollment_table(list_of_df[1])

 operating_funded_allotments = generate_allotments_table(
 list_of_df[2],
 basic_information['Organization Code'],
 'operating_fund'
)
 grant_funded_allotments = generate_allotments_table(
 list_of_df[3],
 basic_information['Organization Code'],
 'grant_fund'
)
 allotments = pd.concat(
 [operating_funded_allotments, grant_funded_allotments]
)

 return basic_information, enrollment, operating_and_grant_funded_allotments

basic_information, enrollment, allotments = generate_all_tables(sample_budget)
Aggregation Time
Now that I had cleaned the tables that Tabula produced, it was time to combine them into some aggregated tables.
First I wrote a function that would output a Series (representing one row) of information from all tables for a given school in a given fiscal year.
...

def generate_row(budget_year, basic_information, allotments, enrollment):
 """
 School budget series for fiscal year.

 budget_year should be FY14, FY18, or FY19
 """
 flattened_allotments = pd.DataFrame(allotments.to_records())
 flattened_allotments.index = flattened_allotments['fund'] +": " + flattened_allotments['allotment']
 flattened_allotments = flattened_allotments.drop(
 ['fund','allotment'], axis=1
)
 budget_allotments = flattened_allotments[budget_year]

 enrollment_label = budget_year + ' Projected' if budget_year == "FY19" else budget_year
 enrollment_index = 'projected_enrollment' if budget_year == "FY19" else 'enrollment'
 enrollment_row = pd.Series(
 enrollment[enrollment_label], index=[enrollment_index]
)

 return pd.concat(
 [basic_information,budget_allotments,enrollment_row],
 axis=0
)

generate_row(
 "FY18",
 basic_information,
 operating_and_grant_funded_allotments,
 enrollment
)
Output:
Council District 2 nd
Organization Code 1380
School Level Elementary School
Economically Disadvantaged Rate 83.44 %
operating_fund: Principals / Assistant Principal.1
operating_fund: Teachersâ€� Regular Education 25
operating_fund: Teachersâ€� Special Education 2.8
operating_fund: Counselors / Student Adv. / Soc.Serv.Liaisons 0.8
operating_fund: Nurses / Health Services 1
operating_fund: Classroom Assistants / Teacher Assistants 8
operating_fund: Secretaries 1
operating_fund: Support Services Assistants 2
operating_fund: Student Climate Staff 1
operating_fund: Other 1.2
operating_fund: Total Positions 43.8
operating_fund: Supplies / Equipment / Non Fullâ€� Time Salaries / Other 100159
grant_fund: Principals / Assistant Principals 0
grant_fund: Teachersâ€� Regular Education 8.6
grant_fund: Teachersâ€� Special Education 0.2
grant_fund: Counselors / Student Adv. / Soc.Serv.Liaisons 0.2
grant_fund: Nurses / Health Services 0
grant_fund: Classroom Assistants / Teacher Assistants 0
grant_fund: Secretaries 0
grant_fund: Support Services Assistants 5
grant_fund: Student Climate Staff 7
grant_fund: Other 0
grant_fund: Total Positions 21
grant_fund: Supplies / Equipment / Non Fullâ€� Time Salaries / Other 19977
enrollment 640
dtype: object
Then, I applied this function to each list of budgets in the collection and compiled them into a DataFrame.
...

def generate_tabular_budget(budget_year, budgets):
 """
 Generate a tabular budget summary for a budget year.

 Budget year must be FY14, FY18, or FY19.
 Enrollemnt values for budget year 2019 are projected.
 """
 school_budget_series = []
 for budget_tables in budgets:
 basic_information, enrollment, operating_and_grant_funded_allotments = generate_all_tables(
 budget_tables
)
 budget_row = generate_row(
 budget_year, basic_information, operating_and_grant_funded_allotments, enrollment
)
 budget_row = budget_row
 school_budget_series.append(budget_row)

 return pd.DataFrame(school_budget_series)

fy14 = generate_tabular_budget('FY14', budgets)
fy14['budget_year'] = "FY14"
fy14.to_csv("output/combined_fy14.csv")

fy18 = generate_tabular_budget('FY18', budgets)
fy18['budget_year'] = "FY18"
fy18.to_csv("output/combined_fy18.csv")

fy19 = generate_tabular_budget('FY19', budgets)
fy19['budget_year'] = "FY19"
fy19.to_csv("output/combined_fy19.csv")

combined_tabular_budgets = pd.concat([fy14, fy18, fy19])
combined_tabular_budgets.to_csv("output/all_budgets_tabular.csv")
Finally, I wanted to output a CSV that would preserve some of the multi-indexed nature of the allotment tables. Here's what I wrote for that.
...

def generate_hierarchical_budget(budgets):
 school_budgets_dfs = []
 for budget_tables in budgets:
 school_budgets_dfs.append(operating_and_grant_funded_allotments)
 return pd.concat(school_budgets_dfs)

hierarchical_budget = generate_hierarchical_budget(budgets)
hierarchical_budget.to_csv("output/all_budgets_hierarchical.csv")

hierarchical_budget
Output:

	FY14	FY18	FY19	org_code	fund	allotment
	1380	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	Secretaries	1.0	1.0	1.0
	Support Services Assistants	0.0	2.0	5.0
	Student Climate Staff	8.0	1.0	3.0
	Other	0.0	1.2	1.0
	Total Positions	60.0	43.8	50.1
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	32272.0	100159.0	97553.0
	grant_fund	Principals/Assistant Principals	0.0	0.0	0.0
	Teachers â€� Regular Education	8.1	8.6	9.6
	Teachers â€� Special Education	0.0	0.2	0.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	0.0	0.2	1.1
	Nurses/Health Services	0.0	0.0	0.0
	Classroom Assistants/Teacher Assistants	0.0	0.0	0.0
	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0
	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	grant_fund	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0
	operating_fund	Principals/Assistant Principals	2.0	1.0	1.0
	Teachers â€� Regular Education	30.2	25.0	24.0
	Teachers â€� Special Education	6.0	2.8	5.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	1.2	0.8	0.1
	Nurses/Health Services	0.6	1.0	1.0
	Classroom Assistants/Teacher Assistants	11.0	8.0	9.0
	Secretaries	1.0	1.0	1.0
	Support Services Assistants	0.0	2.0	5.0
	Student Climate Staff	8.0	1.0	3.0
	Other	0.0	1.2	1.0
	Total Positions	60.0	43.8	50.1
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	32272.0	100159.0	97553.0
	grant_fund	Principals/Assistant Principals	0.0	0.0	0.0
	Teachers â€� Regular Education	8.1	8.6	9.6
	Teachers â€� Special Education	0.0	0.2	0.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	0.0	0.2	1.1
	Nurses/Health Services	0.0	0.0	0.0
	Classroom Assistants/Teacher Assistants	0.0	0.0	0.0
	Secretaries	0.0	0.0	0.0
	Support Services Assistants	7.0	5.0	3.0
	Student Climate Staff	0.0	7.0	4.0
	Other	1.0	0.0	0.0
	Total Positions	16.1	21.0	17.7
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	198454.0	19977.0	15166.0

5160 rows Ã— 3 columns

This makes it easier to aggregate in interesting ways:
hierarchical_budget.groupby('allotment').sum()
Output:

	FY14	FY18	FY19	allotment
	Classroom Assistants/Teacher Assistants	2365.0	1720.0	1935.0
	Counselors/Student Adv./ Soc. Serv. Liaisons	258.0	215.0	258.0
	Nurses/Health Services	129.0	215.0	215.0
	Other	215.0	258.0	215.0
	Principals/Assistant Principals	430.0	215.0	215.0
	Secretaries	215.0	215.0	215.0
	Student Climate Staff	1720.0	1720.0	1505.0
	Supplies/Equipment/Non Fullâ€�Time Salaries/Other	49606090.0	25829240.0	24234585.0
	Support Services Assistants	1505.0	1505.0	1720.0
	Teachers â€� Regular Education	8234.5	7224.0	7224.0
	Teachers â€� Special Education	1290.0	645.0	1075.0
	Total Positions	16361.5	13932.0	14577.0

More Cleaning to be Done
My work here is done. I saved the data from their not-so-accessible PDF prisons. But now it's time for someone with some domain-specific knowledge to make it actionable.
The biggest weakness with the data in its current form is that there is some amount of ambiguity as to what the different allotments numbers represent in real-dollar amounts. Only the Supplies/Equipment/Non Fullâ€�Time Salaries/Other allotment category came in currency notation â€“ the rest of the allotments were represented as simple decimal amounts with no context to help interpret what they mean. Do they represent FTE? Dollar amounts in scientific notation? I'm not sure, but I hope by handing this work off to the right people, these questions and more can be answered more easily thanks to a cleaner, more accessible data set.

 Pandas
 Python

 Graham Beckley

 Philly

 Loves Python; loves Pandas; leaves every project more Pythonic than he found it.

 Monthly Newsletter

 Sign Up

 Support us
 We share tutorials to help and inspire new engineers and enthusiasts. If you've found Hackers and Slackers to be helpful, we welcome donations in the form of coffee :).

 Related Posts

 The Level-Up: What I've Learned in the Four Years Since My Last Post

 A journey through Power BI, PowerPivot, PowerQuery, XLOOKUP, and all the goodies of 64-bit Microsoft Office.

 Jan 30, 2023

 â€¢
 10 mins

 Serving Assets via CDN with Google Cloud

 Serve static content via a Google Cloud CDN to improve load times. Fine-tune your load balancer and caching to match your appâ€™s needs.

 Apr 13, 2022

 â€¢
 11 mins

 Async Python HTTP Requests with AIOHTTP & AIOFiles

 Handle hundreds of HTTP requests, disk writes, and other I/O-bound tasks with quintessential async Python libraries.

 Jan 18, 2022

 â€¢
 14 mins

 Community of hackers obsessed with data science, data engineering, and analysis. Openly pushing a pro-robot agenda.

 Navigation

	

 About

	

 Series

	

 Join

	

 Donate

 	Sign in
	Subscribe

 Authors

 	

 Todd Birchard

	

 Matthew Alhonte

	

 Max Mileaf

	

 Ryan Rosado

	

 Graham Beckley

	

 David Aquino

	

 Paul Armstrong

	

 Dylan Castillo

 Series'

 	
 Data Analysis with Pandas

	
 Build Flask Apps

	
 Google Cloud Architecture

	
 Learning Apache Spark

	
 Mastering SQLAlchemy

	
 Welcome to SQL

	
 GraphQL Tutorials

	
 Working with MySQL

	
 Mapping Data with Mapbox

	
 Python Concurrency with Asyncio

	
 Getting Started with Django

	
 Web Scraping With Python

 Â©2024 Hackers and Slackers, All Rights Reserved.

